Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Neuropsychology ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602816

RESUMO

OBJECTIVE: We aimed to illustrate how complex cognitive data can be used to create domain-specific and general cognitive composites relevant to Alzheimer disease research. METHOD: Using equipercentile equating, we combined data from the Charles F. and Joanne Knight Alzheimer Disease Research Center that spanned multiple iterations of the Uniform Data Set. Exploratory factor analyses revealed four domain-specific composites representing episodic memory, semantic memory, working memory, and attention/processing speed. The previously defined preclinical Alzheimer disease cognitive composite (PACC) and a novel alternative, the Knight-PACC, were also computed alongside a global composite comprising all available tests. These three composites allowed us to compare the usefulness of domain and general composites in the context of predicting common Alzheimer disease biomarkers. RESULTS: General composites slightly outperformed domain-specific metrics in predicting imaging-derived amyloid, tau, and neurodegeneration burden. Power analyses revealed that the global, Knight-PACC, and attention and processing speed composites would require the smallest sample sizes to detect cognitive change in a clinical trial, while the Alzheimer Disease Cooperative Study-PACC required two to three times as many participants. CONCLUSIONS: Analyses of cognition with the Knight-PACC and our domain-specific composites offer researchers flexibility by providing validated outcome assessments that can equate across test versions to answer a wide range of questions regarding cognitive decline in normal aging and neurodegenerative disease. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38429551

RESUMO

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
3.
Nat Aging ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514824

RESUMO

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aß42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aß-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.

5.
Brain Commun ; 6(2): fcae081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505230

RESUMO

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

6.
Nat Med ; 30(4): 1085-1095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382645

RESUMO

With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. In this study, we evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-ß (Aß) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n = 1,422) and the US Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) cohort (n = 337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aß42/40 and p-tau181/Aß42. The primary and secondary outcomes were detection of brain Aß or tau pathology, respectively, using positron emission tomography (PET) imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aß PET status, with an area under the curve (AUC) for both between 0.95 and 0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired subcohorts (BioFINDER-2: n = 720; Knight ADRC: n = 50), plasma %p-tau217 had an accuracy, a positive predictive value and a negative predictive value of 89-90% for Aß PET and 87-88% for tau PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two-cutoffs approach. Blood plasma %p-tau217 demonstrated performance that was clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high-performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Testes Hematológicos , Tomografia por Emissão de Pósitrons
7.
Neurology ; 102(4): e208013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315956

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS: This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of ß-amyloid (Aß) 42/Aß40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS: This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aß42/Aß40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aß42/Aß40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aß42/Aß40 was found in individuals with positive CSF Aß42/Aß40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION: Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Retrospectivos , Proteínas tau , Doenças Neuroinflamatórias , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
8.
Ann Neurol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400792

RESUMO

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024.

9.
J Int Neuropsychol Soc ; : 1-11, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282413

RESUMO

OBJECTIVE: Maintaining attention underlies many aspects of cognition and becomes compromised early in neurodegenerative diseases like Alzheimer's disease (AD). The consistency of maintaining attention can be measured with reaction time (RT) variability. Previous work has focused on measuring such fluctuations during in-clinic testing, but recent developments in remote, smartphone-based cognitive assessments can allow one to test if these fluctuations in attention are evident in naturalistic settings and if they are sensitive to traditional clinical and cognitive markers of AD. METHOD: Three hundred and seventy older adults (aged 75.8 +/- 5.8 years) completed a week of remote daily testing on the Ambulatory Research in Cognition (ARC) smartphone platform and also completed clinical, genetic, and conventional in-clinic cognitive assessments. RT variability was assessed in a brief (20-40 seconds) processing speed task using two different measures of variability, the Coefficient of Variation (CoV) and the Root Mean Squared Successive Difference (RMSSD) of RTs on correct trials. RESULTS: Symptomatic participants showed greater variability compared to cognitively normal participants. When restricted to cognitively normal participants, APOE ε4 carriers exhibited greater variability than noncarriers. Both CoV and RMSSD showed significant, and similar, correlations with several in-clinic cognitive composites. Finally, both RT variability measures significantly mediated the relationship between APOE ε4 status and several in-clinic cognition composites. CONCLUSIONS: Attentional fluctuations over 20-40 seconds assessed in daily life, are sensitive to clinical status and genetic risk for AD. RT variability appears to be an important predictor of cognitive deficits during the preclinical disease stage.

10.
Alzheimers Dement ; 20(3): 2080-2088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224146

RESUMO

INTRODUCTION: Reversion, or change in cognitive status from impaired to normal, is common in aging and dementia studies, but it remains unclear what factors predict reversion. METHODS: We investigated whether reverters, defined as those who revert from a Clinical Dementia Rating® (CDR®) scale score of 0.5 to CDR 0) differed on cognition and biomarkers from unimpaired participants (always CDR 0) and impaired participants (converted to CDR > 0 and had no reversion events). Models evaluated relationships between biomarker status, apolipoprotein E (APOE) ε4 status, and cognition. Additional models described predictors of reversion and predictors of eventual progression to CDR > 0. RESULTS: CDR reversion was associated with younger age, better cognition, and negative amyloid biomarker status. Reverters that eventually progressed to CDR > 0 had more visits, were older, and were more likely to have an APOE ε4 allele. DISCUSSION: CDR reversion occupies a transitional phase in disease progression between cognitive normality and overt dementia. Reverters may be ideal candidates for secondary prevention Alzheimer's disease (AD) trials. HIGHLIGHTS: Reverters had more longitudinal cognitive decline than those who remained cognitively normal. Predictors of reversion: younger age, better cognition, and negative amyloid biomarker status. Reverting from CDR 0.5 to 0 is a risk factor for future conversion to CDR > 0. CDR reversion may be a transitional phase in Alzheimer's Disease progression. CDR reverters may be ideal for Alzheimer's disease secondary prevention trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Cognição , Testes de Estado Mental e Demência , Biomarcadores , Progressão da Doença
11.
Alzheimers Dement ; 20(3): 2240-2261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170841

RESUMO

INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau
12.
Ann Neurol ; 95(2): 299-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897306

RESUMO

OBJECTIVE: This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS: Biomarkers of Alzheimer disease neuropathology (amyloid-ß 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS: Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION: Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.


Assuntos
Doença de Alzheimer , Demência , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3 , Proteínas tau/líquido cefalorraquidiano , Estudos Transversais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano
13.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038976

RESUMO

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Assuntos
Doença de Alzheimer , Cognição , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Negro ou Afro-Americano , Brancos
14.
Neuroimage Clin ; 41: 103551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38150745

RESUMO

The use of biomarkers for the early detection of Alzheimer's disease (AD) is crucial for developing potential therapeutic treatments. Positron Emission Tomography (PET) is a well-established tool used to detect ß-amyloid (Aß) plaques in the brain. Previous studies have shown that cross-sectional biomarkers can predict cognitive decline (Schindler et al.,2021). However, it is still unclear whether longitudinal Aß-PET may have additional value for predicting time to cognitive impairment in AD. The current study aims to evaluate the ability of baseline- versus longitudinal rate of change in-11C-Pittsburgh compound B (PiB) Aß-PET to predict cognitive decline. A cohort of 153 participants who previously underwent PiB-PET scans and comprehensive clinical assessments were used in this study. Our analyses revealed that baseline Aß is significantly associated with the rate of change in cognitive composite scores, with cognition declining more rapidly when baseline PiB Aß levels were higher. In contrast, no signification association was identified between the rate of change in PiB-PET Aß and cognitive decline. Additionally, the ability of the rate of change in the PiB-PET measures to predict cognitive decline was significantly influenced by APOE ε4 carrier status. These results suggest that a single PiB-PET scan is sufficient to predict cognitive decline and that longitudinal measures of Aß accumulation do not improve the prediction of cognitive decline once someone is amyloid positive.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Biomarcadores , Tomografia por Emissão de Pósitrons/métodos , Estudos Longitudinais
15.
Brain Commun ; 5(6): fcad280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942088

RESUMO

Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.

16.
Stat Methods Med Res ; : 9622802231215810, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994004

RESUMO

Evaluating correlations between disease biomarkers and clinical outcomes is crucial in biomedical research. During the early stages of many chronic diseases, changes in biomarkers and clinical outcomes are often subtle. A major challenge to detecting subtle correlations is that studies with large sample sizes are usually needed to achieve sufficient statistical power. This challenge is even greater when biofluid and imaging biomarker data are used because the required procedures are burdensome, perceived as invasive, and/or expensive, limiting sample sizes in individual studies. Combining data across multiple studies may increase statistical power, but biomarker data may be generated using different assay platforms, scanner types, or processing protocols, which may affect measured biomarker values. Therefore, harmonizing biomarker data is essential to combining data across studies. Bridging studies involve re-processing of a subset of samples or imaging scans to evaluate how biomarker values vary by studies. This presents an analytic challenge on how to best harmonize biomarker data across studies to allow unbiased and optimal estimates of their correlations with standardized clinical outcomes. We conceptualize that a latent biomarker underlies the observed biomarkers across studies, and propose a novel approach that integrates the data in the bridging study with the study-specific biomarker data for estimating the biological correlations between biomarkers and clinical outcomes. Through extensive simulations, we compare our method to several alternative methods/algorithms often used to estimate the correlations. Finally, we demonstrate the application of this methodology to a real-world multi-center Alzheimer's disease biomarker study to correlate cerebrospinal fluid biomarker concentrations with cognitive outcomes.

18.
Alzheimers Dement ; 19(10): 4454-4462, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37534906

RESUMO

INTRODUCTION: Neuronal health as a potential underlying mechanism of the beneficial effects of exercise has been understudied in humans. Furthermore, there has been limited consideration of potential moderators (e.g., cardiovascular health) on the effects of exercise. METHODS: Clinically normal middle-aged and older adults completed a validated questionnaire about exercise engagement over a 10-year period (n = 75; age 63 ± 8 years). A composite estimate of neuronal injury was formulated that included cerebrospinal fluid-based measures of visinin-like protein-1, neurogranin, synaptosomal-associated protein 25, and neurofilament light chain. Cardiovascular risk was estimated using the Framingham Risk Score. RESULTS: Cross-sectional analyses showed that greater exercise engagement was associated with less neuronal injury in the group with lower cardiovascular risk (p = 0.008), but not the group with higher cardiovascular risk (p = 0.209). DISCUSSION: Cardiovascular risk is an important moderator to consider when examining the effects of exercise on cognitive and neural health, and may be relevant to personalized exercise recommendations. HIGHLIGHTS: We examined the association between exercise engagement and neuronal injury. Vascular risk moderated the association between exercise and neuronal injury. Cardiovascular risk may be relevant to personalized exercise recommendations.

19.
Neurology ; 101(14): e1424-e1433, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37532510

RESUMO

BACKGROUND AND OBJECTIVES: The capacity of specialty memory clinics in the United States is very limited. If lower socioeconomic status or minoritized racial group is associated with reduced use of memory clinics, this could exacerbate health care disparities, especially if more effective treatments of Alzheimer disease become available. We aimed to understand how use of a memory clinic is associated with neighborhood-level measures of socioeconomic factors and the intersectionality of race. METHODS: We conducted an observational cross-sectional study using electronic health record data to compare the neighborhood advantage of patients seen at the Washington University Memory Diagnostic Center with the catchment area using a geographical information system. Furthermore, we compared the severity of dementia at the initial visit between patients who self-identified as Black or White. We used a multinomial logistic regression model to assess the Clinical Dementia Rating at the initial visit and t tests to compare neighborhood characteristics, including Area Deprivation Index, with those of the catchment area. RESULTS: A total of 4,824 patients seen at the memory clinic between 2008 and 2018 were included in this study (mean age 72.7 [SD 11.0] years, 2,712 [56%] female, 543 [11%] Black). Most of the memory clinic patients lived in more advantaged neighborhoods within the overall catchment area. The percentage of patients self-identifying as Black (11%) was lower than the average percentage of Black individuals by census tract in the catchment area (16%) (p < 0.001). Black patients lived in less advantaged neighborhoods, and Black patients were more likely than White patients to have moderate or severe dementia at their initial visit (odds ratio 1.59, 95% CI 1.11-2.25). DISCUSSION: This study demonstrates that patients living in less affluent neighborhoods were less likely to be seen in one large memory clinic. Black patients were under-represented in the clinic, and Black patients had more severe dementia at their initial visit. These findings suggest that patients with a lower socioeconomic status and who identify as Black are less likely to be seen in memory clinics, which are likely to be a major point of access for any new Alzheimer disease treatments that may become available.


Assuntos
Doença de Alzheimer , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etnologia , Doença de Alzheimer/terapia , População Negra , Estudos Transversais , Grupos Raciais , Fatores Socioeconômicos , Estados Unidos , Transtornos da Memória/epidemiologia , Transtornos da Memória/etnologia , Transtornos da Memória/etiologia , População Branca , Características da Vizinhança , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
20.
Nat Med ; 29(8): 1954-1963, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443334

RESUMO

Aggregated insoluble tau is one of two defining features of Alzheimer's disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R2 ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R2 ≤ 0.48) approached that of tau-PET (0.44 ≤ R2 ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates ('T').


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...